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Zipf’s law asserts that in all natural languages the frequency of a word is inversely proportional to its rank.
The significance, if any, of this result for language remains a mystery. Here we examine a null hypothesis for
the distribution of word frequencies, a so-called discourse-triggered word choice model, which is based on the
assumption that the more a word is used, the more likely it is to be used again. We argue that this model is
equivalent to the neutral infinite-alleles model of population genetics and so the degeneracy of the different
words composing a sample of text is given by the celebrated Ewens sampling formula[Theor. Pop. Biol.3, 87
(1972)], which we show to produce an exponential distribution of word frequencies.
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A remarkable aspect of natural languages is Zipf’s law: if
a large sample of words in a text are arranged in rank order,
from most frequent to least frequent, then the dependence of
the frequencyP of a word on its rankr is very well de-
scribed by the power-law distributionP~1/r, regardless of
the language or speaker[1]. The significance of Zipf’s law in
language, however, is obscure. On the one hand, the finding
that texts produced by the random emission of symbols and
spaces, so that words of the same length are equiprobable,
also generate word frequency distributions that follow Zipf’s
law (more precisely, the generalized Zipf’s law[2,3])
prompted the claim that this law is linguistically very shal-
low [4]. On the other hand, quantitative analyses of issues
such as the evolution of syntactic communication[5] and the
emergence of irregularities in language[6] usually assume
that individuals use lexicons characterized by Zipfian word
frequencies. Moreover, the fascinating enterprise of deter-
mining whether noncoding regions of DNA sequences have
linguistic features, and hence whether they carry out biologi-
cal information, is based on the assumption that Zipf’s law is
a crucial ingredient of language[7,8].

Clearly, if the random emission of symbols is accepted as
the null hypothesis for the creation of texts in natural lan-
guages, then there is simply no need to seek explanation for
Zipf’s law, since it is accounted for by the null model. Not
surprisingly, this viewpoint has been criticized on the
grounds that a valid null model should be based on realistic
assumptions on the factors that originate natural texts. In this
vein, an alternative null hypothesis—the discourse-triggered
word choice model—was put forward recently by Tullo and
Hurford [9] (see also[10,11] for a similar proposal). In this
setting, two sources of words are made available to speakers.
The first is the environment, viewed as a large repository of
distinct words, from where the speakers can choose words to
start a conversation or to refresh an already worn out word
store. The second is the words used in the preceding conver-
sations, which leads to a positive feedback loop: the more
frequent a word is, the more frequent it will become. Accord-
ing to those authors, this last and very plausible ingredient is
responsible for the Zipfian distribution of word frequencies
observed in natural texts. However, in this contribution we
argue that this is not so. In particular, we point out that this

word choice model is identical to the celebrated Wright-
Fisher model of population genetics in the neutral regime
[12] (see[13] for an inspiring overview) and then use the
elegant mathematical apparatus developed in the early 1970s
[14] to show that the word frequency distribution is expo-
nential in the asymptotic limit.

The computer implementation of the discourse-triggered
word choice model is as follows[9]. In the initial generation
the word store is composed ofN different words. ThenN
words are chosen randomly from this set, forming the word
store of the second generation. Of course, some words of the
original word store will be missing, while others will appear
in several copies. The procedure is repeated with the new
word store being selected from that of the previous genera-
tion, until the stationary regime is reached. The result of this
procedure is, as expected, a drastic vocabulary loss—the
final vocabulary being formed by a single word.(The term
vocabulary refers to the set of different words in the word
store.) To evade this problem, it is assumed that at each
generation there is a probability that the selected word is
chosen from the initial word store(i.e., the environment)
rather than from the word store of the previous generation.
This guarantees a continuous supply of new words, resulting
in a nontrivial word distribution in the stationary regime. We
emphasize that the outcome of this procedure is not the pro-
duction of text or speech(to keep repeating a few words is
not a good speech strategy), but the generation of a station-
ary word store characterized by a particular frequency spec-
trum, i.e., the average number of words that occur at a given
frequency. Texts and discourses are then formed by drawing
words at random from this word store.

The algorithmic procedure given above can be couched in
a simple mathematical notation. Assume that the word-store
size N is fixed and that there areK different words(the
vocabulary size). Let mi denote the number of copies of the
ith word in the word store, so that its frequency isxi =mi /N.
To avoid the uninteresting single-word vocabulary, let us as-
sume that there is a mutation probabilityu per word so that
mutation occurs to any of the otherK−1 words with equal
probability. Since we will eventually take the limitsN→`
and K→`, this mutation scheme will always introduce a
new word into the vocabulary. Strictly, the procedure for

PHYSICAL REVIEW E 70, 042901(2004)

1539-3755/2004/70(4)/042901(4)/$22.50 ©2004 The American Physical Society70 042901-1



vocabulary refreshment employed in the original model is
equivalent to migration in population genetics, but if the
population size and the number of allele types are large then
it can be shown that migration and mutation play exactly the
same role in the evolution dynamics[12]. Hence if a wordi
has frequencyxi at one generation, then the expected value
of its frequency in the subsequent generation isxi8
=xis1−ud+s1−xidv wherev=u/ sK−1d. The number of cop-
ies of word i at the next generation is then given by the
binomial distribution

psmid = SN

mi
Dsxi8d

mis1 − xi8d
N−mi . s1d

If one replaces the terms “word” by “allele” and “word
store” by “population” then the Markov chain model just
described is immediately identified with the Wright-Fisher
model of population genetics in the neutral regime, i.e., in
the case that there is no selection pressure favoring the
choice of a particular word[12]. In the limits N@1 andu
!1 such that the productu=2Nu is finite, it can be shown
that the probability densityfsx,td that a given word, sayl,
has frequencyx at time t obeys the Fokker-Planck equation
[12]

] f

] t
=

1

2N

]2

] x2fxs1 − xdfg +
]

] x
hfux− vs1 − xdgfj. s2d

The stationary distribution is then

fsxd =
GfuK/sK − 1dg

GsudGfu/sK − 1dg
xu/sK−1d−1s1 − xdu−1, s3d

whereGs·d is the gamma function. Our focus is on the limit
K→`, termed the infinite-alleles model in the molecular
evolution literature[15], in which the number of distinct
words(the vocabulary size) in the infinite word store is infi-
nite too. Taking this limit in Eq.(3) yields f~1/K→0, in-
dicating that the particular wordl we have considered will
ultimately disappear from the vocabulary. This is expected
since in this frameworkl can mutate to infinitely many dif-
ferent words but no word can mutate back tol. This feature
is in conformity with estimates from glottochronology(i.e.,
the chronology of languages) that suggest the rule of thumb
that languages replace about 20% of their basic vocabulary
every 1000 years[16,17].

Although we cannot focus on the evolution of a particular
word, we can calculate many other interesting properties of
the word store. For instance, the mean number of words in
the word store with frequency betweenx andx+dx is simply

fsxd = lim
K→`

fKfsxdg = ux−1s1 − xdu−1 s4d

which can also be interpreted as the probability that a word
occurs in the word store with frequency insx,x+dxd [14]. To
illustrate the use of the “frequency spectrum”fsxd let us
write the frequencies of the various words occurring in the
word store asp1,p2,… and consider any function of the form
oicspid where cspid is of order of pi

a with aù1. The ex-
pected value of any such function is then given by

Ko
i

cspidL =E
0

1

dx fsxdcsxd s5d

so that, in particular,koipil=1, as expected. For example, the
probability that two words drawn at random are identical is
koipi

2l=1/s1+ud. Use of Eq.(5) allows the calculation of the
probability pk that in a random sample ofn words drawn
from the word store we find exactlyk different words[14],

pk =
lku

k

l1u + l2u2 + ¯ + lnu n s6d

where the coefficientsl i are the Stirling numbers of the first
kind defined by usu+1d¯ su+n−1d= l1u+ l2u 2+¯ + lnu n.
Once it is known that the sample ofn words containsk
different words, we can address the question of how many
times each word appears in the sample. The answer to this
difficult question is provided by the celebrated Ewens sam-
pling formula [14,18]

Phn1,n2,…,nkuk,nj =
n!

k ! lkn1n2 ¯ nk
s7d

with oi=1
k ni =n. Hereni is the number of copies of wordi in

the sample ofn words.
Knowledge of Ewens formula allows us to obtain directly

the distribution of word frequencies. To this end we need
only to generate integersn1,… ,nk with the probability dis-
tribution (7) and then sort them out according to their rank.
More pointedly, if l is the most frequent word(i.e., nl is the
largest among thek integers) then nl /n is the frequency of
the first-rank word, and similarly for the words of lower
ranks. This can be easily achieved using the Metropolis al-
gorithm as follows(see, e.g.,[19]). Considern balls distrib-
uted amongk urns, so that no urn is empty. The state of the
system at step t is specified by the vectornt

=sn1,n2,… ,nkd, whereni .0 is interpreted now as the num-
ber of balls in urni. Suppose the system is in statent. We
choose two distinct urns, sayi and j , at random. Without loss
of generality we consider urni as the donor and urnj as the
receptor. Ifni =1 then we maintain the current state in the
next step,nt+1=nt. Otherwise we calculate the ratio

R=
ninj

sni − 1dsnj + 1d
s8d

and move one ball from urni to urn j if Rù1 so that the new
state becomesnt+1=sn1,… ,ni −1,… ,nj +1,… ,nkd. On the
other hand, ifR,1 we generate a uniformly distributed ran-
dom numberr and move one ball fromi to j provided that
R. r, otherwise we keep the old state in the next step. These
rules define the transition probabilities of a Markov chain,
whose stationary state is distributed according to the Ewens
sampling formula.

More specifically, we use the following procedure to pro-
duce the distributions of word frequencies. For fixedu andn
we generate the number of distinct wordsk according to
distribution(6). Oncek is known we can start the iteration of
the Markov chain urn model just described. The initial state
is chosen such that then balls are distributed as uniformly as

BRIEF REPORTS PHYSICAL REVIEW E70, 042901(2004)

042901-2



possible among thek urns. After a transient period of 1000n
steps, we collect 1000 sample states at intervals of 100n
steps. Sorting thek components of each state vector yields
immediately the required information—the frequency as a
function of the rank. The entire process is then repeated 50
times. At the end of this procedure we have 53104 values
for, say, the frequency of the word of rank 1. The results
presented in Figs. 1–3 represent averages over these values.

The dependence of the average frequency of a wordP on
its rank r, depicted in a semilogarithmic scale in Fig. 1,
reveals the exponential nature of the asymptotic regime of
the word frequency distribution. This is corroborated by the
results presented in Fig. 2, which show that the leveling off
of the distribution in the high rank region is an effect of the
finite sample sizen. Moreover, that seems to be the sole
effect ofn, as indicated by the collapse of the data in the low
and intermediate rank regions. A more quantitative perspec-
tive is provided by Fig. 3 where the rescaled frequencyP8
=uP/0.62 is plotted against the rescaled rankr8=r /u in a
semilogarithmic scale. The data for different values ofu (and
n, as well) are fitted very well by the exponential function
P8=exps−r8d.

Our main result, namely, that the distribution of word fre-
quencies of the discourse-triggered word choice model is ex-

ponential in the asymptotic regime, is in disagreement with
the results of the proponents of the model, who found a
power-law distribution [9]. The brute-force simulation
method those authors resorted to, however, precludes a full
statistical assay of the word frequency distribution. The
study of the linguistic features of the noncoding DNA is
another example where the finding of a power-law word fre-
quency distribution is questionable[7,8].

From the standpoint of a null model, the failure of the
discourse-triggered word choice model to reproduce Zipf’s
law is most welcome, as it calls for improvements of the
basic model that may ultimately unveil the mechanisms re-
sponsible for the power-law distribution of word frequencies.
In this line, we mention that a similar word choice model, in
which the word store grows unconstrained from a single ini-
tial word and new words are generated by mutation, seems to
exhibit a(nonstationary) power-law distribution of word fre-
quencies[10,11]. Hence this model lacks the effective com-
petition between words that results from the limitation of the
word-store size. More importantly, the unbounded growth
prevents the attainement of the key element of the present
approach—a stationary, though not static, word store from
where words are selected to form texts and discourses.

The notion that words compete and languages evolve
similarly to individuals and populations was already familiar
in Darwin’s time[20]. The well-documented development of
Romance languages from Latin(i.e., the gradual divergence
of the languages of France, Italy, Spain, Portugal, and Roma-
nia from Latin, as well as from each other) offers a convinc-
ing proof that groups of related languages develop and di-
verge from a common ancestral tongue, similarly to gene
lineages[16,17]. However, the use of analytical[21] and
computational[22] methods derived from evolutionary biol-
ogy to analyze language features and linguistic data is still
incipient. The present contribution dovetails with these ef-
forts by using the equivalence between the neutral evolution
model and the discourse-triggered word choice model to cal-
culate the distribution of word frequencies of this alternative
null hypothesis for text production.

The research at São Carlos was supported by CNPq and
FAPESP, Project No. 99/09644-9.

FIG. 1. Semilogarithmic plot of the average frequencyP as
function of rankr for n=23104 and u=10 s+d, 25 (h), 50 (¹),
75 s3d, and 100(s). The straight lines are the numerical fitting
obtained discarding the low rank region.

FIG. 2. Semilogarithmic plot of the average frequencyP as
function of rankr for u=50 andn=23103 (n), 104 (,), and 2
3104 (s).

FIG. 3. Semilogarithmic plot of the rescaled average frequency
P8 as function of the rescaled rankr8 for the data of Fig. 1. The
straight line is the functionP8=exps−r8d.
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